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a b s t r a c t

For the nearly exponential type of feedforward neural networks (neFNNs), the essential order of their
approximation is revealed. It is proven that for any continuous function defined on a compact set of Rd,
there exist three layers of neFNNs with the fixed number of hidden neurons that attain the essential
order. Under certain assumption on the neFNNs, the ideal upper bound and lower bound estimations
on approximation precision of the neFNNs are provided. The obtained results not only characterize the
intrinsic property of approximation of the neFNNs, but also proclaim the implicit relationship between
the precision (speed) and the number of hidden neurons of the neFNNs.
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1. Introduction

Artificial neural networks have been extensively applied in var-
ious fields of science and engineering. It is mainly because feed-
forward neural networks (FNNs) have universal approximation
capability (Attali & Pages, 1997; Cardaliaguet & Euvrard, 1992;
Chen, 1994; Chen & Chen, 1995; Chui & Li, 1992, 1993; Cybenko,
1989; Funahashi, 1989; Hornik, Stinchombe, &White, 1989, 1990;
Leshno, Lin, Pinks, & Schocken, 1993). A typical example of such
universal approximation assertions states that for any given con-
tinuous function defined on a compact set K of Rd, there exists a
three-layer of FNN such that it can approximate the function arbi-
trarily well. A three-layer of FNN with one hidden layer, d inputs
and one output can be mathematically expressed as

N (x) =
m∑
i=1

ciσ

(
d∑
j=1

wijxj + θi

)
, x ∈ Rd, d ≥ 1, (1.1)

where 1 ≤ i ≤ m, θi ∈ R are the thresholds, wi = (wi1,
wi2, . . . , wid)

T
∈ Rd are connection weights of neuron i in the

hidden layer with the input neurons, ci ∈ R are the connection
strength of neuron iwith the output neuron, and σ is the activation
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function used in the network. The activation function is normally
taken as sigmoid type, that is, it satisfies σ(t) → 1 as t → +∞
and σ(t) → 0 as t → −∞. Eq. (1.1) can be further expressed in
vector form as

N (x) =
m∑
i=1

ciσ (wi · x+ θi) , x ∈ Rd.

The approximation of multivariate functions by the FNNs (1.1)
has been widely studied in past years, with various significant re-
sults, concerningdensity or complexity. For instance, itwas proven
in Cybenko (1989) that under very mild conditions on the sig-
moidal activation function σ , any continuous function defined on
a compact set K ofRd can be approximated arbitrarily well by the
FNNs (1.1). Later, various density and complexity results on ap-
proximation of the functions by the FNNs (1.1) were established
by many authors and by using different approaches for more or
less general situations (Chen, 1994; Funahashi, 1989; Hornik et al.,
1990; Yoshifusa, 1991). All these researches are qualitative in fea-
ture. From the perspective of application, however, the quantita-
tive research on approximation of the neural networks is more
helpful. Particularly, one would like to know what is the degree
of the neural networks to approximate a certain type of func-
tions, and how fast they approximate. Also one would like to know
how the approximation capability of a neural network is related to
the topology of the network (say, how many hidden neurons are
needed in order for the network to reach a predetermined approx-
imation precision?). There have been many authors who studied
those problems (Barron, 1993; Cao & Xu, 2001; Kůrkova, Kainen, &
Kreinovich, 1997; Maiorov & Meir, 1998; Mhaskar, 1996; Mhaskar
& Khachikyan, 1995; Mhaskar & Micchelli, 1992, 1994, 1995; Rit-
ter, 1994). The results obtained have basically dealt with the neural
networks with logistic (including sigmoid) and no Heaviside step
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activation functions. They have offered, however, only certain kind
of upper bound estimations on approximation of the neural net-
works. In those researches, Suzuki (1998) obtained, by using a con-
structive approach, an upper bound estimation on approximation
of the neural networks and explicitly calculated the number of hid-
den neurons needed for guaranteeing the predetermined approxi-
mation precision.
The upper bound estimation results can imply convergence

of the neural networks to the function to be approximated and
also provide quantitative measurement on how accurate the neu-
ral networks approximate the functions. The estimations cannot,
however, precisely characterize the essential order of the net-
works, that is, they cannot decipher the highest approximation
accuracy of the neural networks to achieve (Xu & Cao, 2004). In
order to get such an essential order of approximation of a neu-
ral network, besides upper bound estimation, a lower bound es-
timation that characterizes the worst approximation precision of
the network can also be needed. The essential order of approxima-
tion can be obtained when and only when the upper and the lower
bound estimations are of the same order. Clearly, obtaining the es-
sential order of a neural network is not easy, but very important,
and is significant. In Xu and Cao (2004), such problem was tack-
led for the neural networks (1.1) when the activation function is
sigmoidal and satisfies some other conditions. In the present pa-
per, our aim is to tackle the same problem for more broader types
of neural networks when the activation function is nearly expo-
nential. The class of the nearly exponential functions was intro-
duced byRitter (1994),which are those functions that approximate
the exponential function arbitrarily well on the negative half line
through appropriate affine transformation at the origin and in the
target space (for the more precise definition, see the next section).
It includes the normal sigmoid and exponential functions as spe-
cial cases. A neural network with the form (1.1) henceforth will be
called a nearly exponential FNN (denoted by neFNN in brief)when-
ever the activation function is nearly exponential.
In Ritter (1999), an upper bound estimation on approximation

of the neFNNswas developed, but it did not offer any estimation on
lower bound of approximation. Consequently, uncovering the es-
sential order of approximation of the neFNNs is still open. In Xu
and Wang (2006), we resolved the problem through developing
a more precise upper bound estimation on approximation of the
FNNs first, and then provided a lower bound estimation of the ap-
proximation. Finally, we characterized the conditions under which
the upper and the lower bounds have the same order, from which
the essential order of the neFNNs will be revealed. In this paper,
we characterize accurately the topology selection and the essential
order of neFNNs under some conditions; the results obtained not
only sharpen the results developed in Ritter (1999), but also clarify
the relationship between the approximation speed (precision) and
the number of hidden neurons needed for the neural networks.
The remainder of this paper is organized as follows. In Section 2,

we present some notations, some basic definitions, the main re-
sults and briefly review their significations. Section 3 summarizes
some of our previous work and offers two fundamental results for
proving our results. In Section 4, the proof of the main results is
given by some techniques of approximation theory. Section 5 pro-
vides some concluding remarks.

2. Notation and main results

We begin with some comments concerning notation. The
symbolsN,R and R+ stand respectively for the sets of nonnegative
integers, real numbers, and nonnegative real numbers. We use
Rd which denotes d-dimensional Euclidean space (d ≥ 1). All
operations on vectors are taken component wisely. For instance,
when
x = (x1, x2, . . . , xd) ∈ Rd, y = (y1, y2, . . . , yd) ∈ Rd,

we define

ex = (ex1 , ex2 , . . . , exd), xy = (x1y1, x2y2, . . . , xdyd)

and whenever xi ≥ 0, i = 1, 2, . . . , d, we define

xy = (xy11 , x
y2
2 , . . . , x

yd
d ).

We use Pn(d) and Tn(d)which respectively denote the spaces of
all d-variate algebric and triangular polynomials of order not larger
than n. The symbol PEn (d) is used to standing for the set of all real, d-
variate exponential polynomials of the form

∑
λ∈l(0,1,...,n)d aλe

−λ·x

for some l > 0. For any given activation function σ : R→ R, Rσn (d)
denotes the set of all sums of the form

∑
λ∈l(0,1,...,n)d aλσ(−λ · x+

bλ) (l > 0). The infinity norm of Rd is denoted by ‖ · ‖∞, which is
defined by

‖f ‖∞ = sup
x∈Rd
|f (x)|;

For any given continuous function f and a bounded real or complex
function set S, the distance from f to S is defined as

d∞(f , S) = sup
g∈S
‖f − g‖∞,

where g is a bounded function. Given a smooth function f in Rd,
the |m|th order partial derivatives of f are expressed as

D|m|f (x) :=
∂ |m|f
∂x|m|

(x) =
∂ |m|f

∂xm11 ∂x
m1
2 · · · ∂x

m1
s
(x).

The modulus of smoothness of a function is a measure of
continuity and smoothness of the function,which has played a very
important role in distinguishing different classes of functions and
quantitative studies in approximation theory. Suppose that Q is
a metric space with metric d, and C(Q ) is the set of continuous
functions on Q .

Definition 1. If f ∈ C(Q ), the modulus of smoothness of f ,
denoted by ω(f , t), is defined by

ω(f , t) = sup
‖x1−x2‖≤t

|f (x1)− f (x2)|.

Given a direction e ∈ Rd, the rth order symmetric difference of f
along the direction e and with the step-length h defined by

∆rhf (x) =
r∑
i=0

(−1)r−i
( r
i

)
f
(
x+

( r
2
− i
)
he
)
.

Moreover, the rth order modulus of smoothness of f is defined by

ωr(f , t) = sup
x± he2 ∈Q ,‖h‖≤t

∣∣∆rhf (x)∣∣ .
A function f is said to belong to the α-Lipschitz class with order
up to 2, denoted by f ∈ Lip(α)2, if the second order modulus of
smoothnessω2(f , t) = O(tα), whereα ∈ (0, 2] is a real parameter.

Definition 2 (Ritter, 1999). A function σ : R −→ R is said to
be nearly exponential whenever, for all ε > 0, there exist real
numbers β, γ , ρ, τ such that

|γ σ(βt + τ)+ ρ − et | < ε

for all t ≤ 0.

Thismeans that after suitable rescaling and shifting at the origin
and in the target spaces R, the function σ can approximate the
exponential function arbitrarily well in the half line of negative
reals. It is easy to see that the normal exponential function et is
nearly exponential (get this through setting β = 1, ρ = 0 and
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γ = 1). The sigmoid function σ(t) = 1
1+e−t can also be shown to

be nearly exponential, provided we observe that through putting
β = 1, ρ = 0 and γ = 1

σ(τ)
, we can get∣∣∣∣σ(t + τ)σ (τ )

− et
∣∣∣∣ = et+τ

et+τ + 1
|1− et | ≤ eτ |et − e2t |,

which converges to 0 uniformly for t ≤ 0 and τ −→ −∞.
Furthermore, we can show that most sigmoid-type functions are
nearly exponential functions.
In Ritter (1999), using the modulus of smoothness, Ritter ob-

tained the following results of the upper bound estimation for the
nearly exponential neural networks.

Proposition 1. For any f ∈ C[0,1]d and n ∈ N, there exists a nearly
exponential type of FNN, Rσn (d), with the form (1.1), whose number
of hidden neurons is m(n) ≥ minCd(f ,n)<ε(n + 1)

d (here Cd(f , n) =(
1
2 +

π2

4

√
d
)
ω
(
f , 1
n+2

)
, n is any integer not less than the reciprocal

of the preset approximation precision) such that

d∞(f , Rσn (d)) ≤
(
1
2
+
π2

4

√
d
)
ω

(
f ,

1
n+ 2

)
. (2.0)

By using higher order modulus of smoothness of a function, we
will generalize and sharpen the above result in several different
ways. First, we will take the second-order modulus of smoothness
instead of the modulus of first order to deduce a more accurate
upper bound estimation on approximation of the neFNNs. Second,
we develop a lower bound estimation of approximation accuracy
of the neFNNs, and then obtain the essential order of the neFNNs.
The main results obtained in this paper can be summarized as the
following theorem.

Theorem 1. Suppose V is a compact set of Rd and f is any
given continuous function defined on V . Then, there exists a nearly
exponential type of FNN with the hidden neuron number m(n) ≥

minBd(f ,n)<ε(n+1)
d (here Bd(f , n) = 1

2

(√
dπ2
2 + 1

)2
ω2
(
f , 1
n+2

)
, n

is any integer not less than the reciprocal of the preset approximation
precision ε) such that
(i) the following upper bound estimation holds:

d∞(f , Rσn (d)) ≤
1
2

(√
dπ2

2
+ 1

)2
ω2

(
f ,

1
n+ 2

)
; (2.1)

(ii) the following lower bound estimation holds:

ω2

(
f ,

1
n+ 2

)
≤
C
n2

{
n∑
k=1

k · d∞(f , Rσk (d))+ ‖f ‖∞

}
; (2.2)

(iii) the following essential order estimation holds:

d∞(f , Rσn (d)) = ©(n
−α) iff f ∈ Lip(α)2; (2.3)

(iv) if the relation d∞(f , Rσn (d)) ≤ (1 + 1/n)2d∞(f , Rσn+1(d)) is
correct, we have

ω2

(
f ,

1
n+ 2

)
≤ C{d∞(f , Rσn (d))+ n

−2
‖f ‖∞}, (2.4)

and

Cω2

(
f ,

1
n+ 2

)
− C

1
n2
‖f ‖∞

≤ d∞(f , Rσn (d)) ≤
(
1
2
+
π2

4

√
d
)
ω2

(
f ,

1
n+ 2

)
; (2.5)

(v) if d∞(f , Rσn (d)) ismonotonically decreasing, then for 0 ≤ δ ≤ 1,
we have
ω2

(
f ,

1
n+ 2

)
≤ C

{
1

n2(1−δ)
d∞(f , Rσ1 (d))

+ d∞(f , Rσ[nδ ](d))+ n
−2
‖f ‖∞

}
. (2.6)

Here and hereafter, C, C1, C2, C3 are positive constants indepen-
dent of n, f and x(its value, however, may be different in different
contexts). And [nδ] is a maximum integer not less than the number
nδ .

Remark 1. The assertion (i) in the above theorem offers an upper
bound estimation on approximation order of the neFNN, which
obviously sharpens the upper bound in Ritter (1999) (i.e. (2.0) of
Proposition 1. For example, let g(x) = xm (m ∈ N) is a polynomial,
then ω(g, t) = ©(t), and ω2(g, t) = ©(t2). In general, we have
the relationship: ω(g, t) ≤ Cω2(g, t1/2) and ω2(g, t) ≤ 2ω(g, t)).
And Eq. (2.1) deciphers explicitly the relationship between the up-
per bound of approximation speed of the neFNN and the number of
hidden neurons m. In particular, it shows that the approximation
speed of the neFNN is proportional to the number of hidden neu-
rons and controlled by the second-ordermodulus of smoothness of
f , and it reveals howmany hidden neurons are needed in order for
the neFNN to achieve a preset approximation precision. Obviously,
d∞(f , Rσn (d)) → 0 as n → ∞. It therefore also shows that any
continuous function f on V can be approximated arbitrarily well
by the neFNNs.
The assertion (ii) of the Theorem 1 provides us a lower bound

estimation on approximation accuracy of the neFNN, which im-
plies that the average of the neFNN over parameters n or, equiv-
alently, over different number of neurons, is lower controlled by
the second order modulus of smoothness of f and 1

n2
. Actually, we

can get this through rewriting (2.2) as

ω2

(
f ,

1
n+ 2

)
−
C
n2
‖f ‖∞

≤ C
(
1
2
+
1
n

){
2

n(n+ 1)

n∑
k=1

k · d∞(f , Rσk (d))

}
.

It is noted that the following identity always holds

lim
n→∞

d∞(f , Rσn (d)) = limn→∞
1
n2

n∑
k=1

k · d∞(f , Rσk (d)).

So, whenever n (or, equivalently, the number of hidden neurons) is
sufficiently large, d∞(f , Rσn (d)) and

1
n2
∑n
k=1 k·d∞(f , R

σ
k (d)) can be

viewed approximately as the same. In such cases, statements (2.1)
and (2.2) then imply

Cω2

(
f ,

1
n+ 2

)
− C

1
n2
‖f ‖∞ ≤ d∞(f , Rσn (d))

≤

(
1
2
+
π2

4

√
d
)
ω2

(
f ,

1
n+ 2

)
.

This shows that the neFNN can achieve the highest approximation
accuracy and the accuracy is controlled by ω2

(
f , 1
n+2

)
.

The assertion (iii) of the Theorem 1 gives an essential order es-
timation of the neFNN. It shows that whenever f belongs to the α-
Lipschitz class, the essential order of approximation of the neFNN is
©(n−α). It shows also that the higher the smoothness of the func-
tion to be approximated, the faster the neFNNcan approximate and
vice versa.
The assertion (iv) of the Theorem 1 offers us a lower bound es-

timation on approximation accuracy of the neFNN under the as-
sumption of d∞(f , Rσn (d)) ≤ (1 + 1/n)2d∞(f , Rσn+1(d)), which
implies that the neFNN over parameters n or, equivalently, over
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different number of neurons, is lower controlled by the second-
order modulus of smoothness of f and 1

n2
. Actually, we can get this

through rewriting (2.4) as

ω2

(
f ,

1
n+ 2

)
−
1
n2
‖f ‖∞ ≤ Cd∞(f , Rσn (d)).

According to (2.1), we have

Cω2

(
f ,

1
n+ 2

)
− C

1
n2
‖f ‖∞ ≤ d∞(f , Rσn (d))

≤

(
1
2
+
π2

4

√
d
)
ω2

(
f ,

1
n+ 2

)
.

This shows that the order of approximation by neFNNs can be char-
acterized nearly completely through ω2

(
f , 1
n+2

)
.

The assertion (v) of the Theorem 1 affords us a lower bound
estimation on approximation accuracy of the neFNNs when
d∞(f , Rσn (d)) is monotonically decreasing of n. (v) shows that the
neFNNs over [nδ] is lower controlled by the second-order modulus
of smoothness of f and 1

n2(1−δ)
(0 < δ < 1). According to (2.1), we

have

Cω2

(
f ,

1
n+ 2

)
− C

1
n2(1−δ)

d∞(f , Rσ1 (d))− Cn
−2
‖f ‖∞

≤ d∞(f , Rσ[nδ ](d))

≤

(
1
2
+
π2

4

√
d
)
ω2

(
f ,

1
[nδ] + 2

)
.

Since d∞(f , Rσ1 (d)) is a constant, the above inequalities show that
the lower bound and the upper bound of approximation by neFNNs
Rσ
[nδ ](d) are determined by ω2

(
f , 1
n+2

)
and ω2

(
f , 1
[nδ ]+2

)
, respec-

tively.

Remark 2. Barron (1993) proved the approximation bounds
related to the Theorem 1. He used an integral representation by
means of indictor functions of half spaces in order to show that the
order of uniform approximation of any function f : [−1, 1]d 7→ R
with Fourier representation f̌ :

f (x) =
∫
Rd
ex·y f̌ (y)dy

such that ‖y‖f̌ (y) is integrable is at leastO(N−1/2) (N is the number
of hidden neuron). This describes a class of functions for which a
dimension-independent approximation order holds (the constants
involved in the estimates depend on dimension). Barron’s class is
described in terms of a global property of its Fourier transform.
Barron’s bound is controlled by the number of hidden neuron and
the dimension, and our bounds depend on the second-order mod-
ulus of smoothness of f and the number of hidden neuron. Barron’s
results also showed that the order of mean-square approximation
of a member of the said class is at least O(n−1/2). This results are
very useful in the statistical classification problems. Our paper ad-
dresses an important issue for neural networks: the essential order
of approximation (helping to explain why somany neurons are re-
quired andperhapswhy the speed of convergence behaves theway
it does).

The proof of Theorem 1 will be presented in Section 4. Some
preliminary results will be given in the next section.

3. Uniform approximation of continuous functions by polyno-
mials

In approximation theory (Jackson, 1912), the well-known
Jackson’s type theorems describe approximation precision and
speed of a continuous function defined on a real interval by
polynomials in terms of modulus of smoothness of the function.
Multivariate extensions of this type of theorems are due to the
references (Feinerman & Newman, 1974; Nikol’skii, 1975; Soardi,
1984) Ditzian and Totik (1987), who introduced a new modulus
of smoothness of a function, nowadays known as Ditzian–Totik
modulus. Feinerman and Newman (1974) and Soardi (1984) have
given the following important proposition, which underlies the
research of Ritter (1999).

Proposition 2. For any continuous function f : [0, 1]d → R and all
n ∈ N, the following estimation holds:

d∞(f , Pn(d)) ≤
(
1
2
+
π2

4

√
d
)
ω

(
f ,

1
n+ 2

)
. (3.1)

Using the second-order modulus of smoothness, we sharpened
the above result into the following theorem (Xu &Wang, 2006).

Theorem 2. For any continuous function f : [a, b]d → R and all
n ∈ N, there holds

d∞(f , Pn(d)) ≤
1
2

(√
dπ2

2
+ 1

)2
ω2

(
f ,

1
n+ 2

)
. (3.2)

To prove our main theorem, we also need the following result (Xu
&Wang, 2006).

Theorem 3. For any continuous function f : [a, b]d → R and all
n ∈ N, we have

d∞(f , PEn (d)) ≤
1
2

(√
dπ2

2
+ 1

)2
ω2

(
f ,

1
n+ 2

)
. (3.3)

4. Proof of Theorem 1

Firstly,weprove the estimation (2.1). Let τ denote the Euclidean
projection [0, 1]d −→ V ⊆ Rd, and f be a continuous function
defined on the compact set V . Then f (τ ) is a continuous extension
of f on V with the same modulus of smoothness as that of f . Using
Theorem 3, we know that there is an exponential polynomial

p(x) =
∑

λ∈l(0,1,2,...,n)d
aλe−λ·x

such that

‖f − p|C‖∞ ≤ ‖f (τ )− p|[0,1]d‖∞

≤
1
2

(√
dπ2

2
+ 1

)2
ω2

(
f ,

1
n+ 2

)
+ ε.

Since σ is nearly exponential, we know that the exponential
function ex is uniformly approximated by an expression of the form
γ σ(βx + τ) + ρ on the half line, with the error ε/

∑
|aλ|. So the

sum ∑
λ∈l(0,1,2,...,n)d\{0}

γ aλσ(βλ · x+ τ)

+

γ a0σ(τ)+ ρ ∑
λ∈l(0,1,2,...,n)d

aλ


belongs to Rσn (d) and its distance to f does not exceed the value
1
2

(√
dπ2
2 + 1

)2
ω2
(
f , 1
n+2

)
+ 2ε. Since ε is arbitrary, we obtain

(2.1).
In order to prove (2.2), we establish the following lemma first.
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Lemma 1. For the nonnegative sequences {an}, {bn}, if the inequality
(p > 0)

an ≤
(
k
n

)p
ak + bk (1 ≤ k ≤ n) (4.1)

holds for n ∈ N , then one has

an ≤ Cpn−p
{

n∑
k=1

kp−1bk + a1

}
. (4.2)

Proof. For n ≥ 2, we can choose N ∈ N such that 2N ≤ n < 2N+1.
Then, there is mk ∈ N, 1 ≤ k ≤ n, such that n

2k+1
≤ mk ≤ n

2k

and amk ≤ aj
(

n
2k+1
≤ j ≤ n

2k

)
. TakingmN+1 = 1, we then have by

(4.1) that

an ≤
(m0
n

)p
am0 + bm0

= n−p
N∑
k=0

mpk

(
amk −

(
mk+1
mk

)p
amk+1

)
+ bm0 + n

−pa1

≤

N∑
k=0

2−pkbmk+1 + bm0 + n
−pa1

=

N+1∑
k=1

2−p(k−1)bmk + bm0 + n
−pa1

≤ 2p
N+1∑
k=0

2−pkbmk + n
−pa1

≤ 2p
N+1∑
k=0

2−pk
2k+1

n

∑
n

2k+1
≤j≤ n

2k

bj + n−pa1

≤ 2p+1
N+1∑
k=0

n−p
∑
n

2k+1
≤j≤ n

2k

jp−1bj + n−pa1

≤ Cpn−p
{

n∑
k=1

kp−1bk + a1

}
,

which verifies the equation.
Now we prove the estimation (2.2). For n ≥ 1, n ∈ N , let

un(x) =

(
1− cos2 π

n+2

)
(tn+2(cos x)− tn+2(x))

(n+ 2)
(
cos x− cos π

n+2

)2
be the Korovkin’s kernel, which is seen as a triangular trigonomet-
ric polynomial of degree not greater than n. In the kernel, tn(x) is
the Chebyshev polynomial, namely, tn(x) = arccos(nx), un(x) ∈
Tn(1), un ≥ 0 and there holds 1

2π

∫ π
−π
un(x)dx = 1. As

we know, un(x) can also be represented as un(x) = 2
n+2{∑n/2

−n/2 cos
kπ
n+2 cos kx

}2
. Hence, if we define the d-fold tensor

product vn(x1, x2, . . . , xd) =

d︷ ︸︸ ︷
un(x)× un(x)× · · · × un(x) ∈ Tn(d),

then we find vn ≥ 0 and

(2π)−d
∫
[−π,π ]d

vn(x)dx = 1.

Recall that the convolution L(vn, f ) of two continuous 2π-periodic
functions vn and f is defined by

L(vn, f ) = (2π)−d
∫
[−π,π]d

f (x− t)vn(t)dt, (x ∈ Rd).

Obviously,
DνL(vn, f ) = (2π)−d
∫
[−π,π ]d

Dν f (x− t)vn(t)dt.

For all 1 ≤ q ≤ ∞, since (2π)−d
∫
[−π,π]d vn(x)dx = 1 and

‖L(vn, f )‖q ≤ ‖f ‖q‖vn‖1, we have

‖D|ν|L(vn, f )‖q ≤ ‖Dν f ‖q. (4.3)

By using the Bernstein inequality, we then obtain

‖D|ν|L(vn, f )‖q ≤ Cn|ν|‖Dν f ‖q. (4.4)

Let an = 1
n2
‖D|ν|L(vn, f )‖q, |ν| = 2, and bn = ‖L(vn, f ) − f ‖q.

From Eqs. (4.3) and (4.4), we obtain

an ≤
1
n2
‖D|ν|L(vn, L(vk, f ))‖q +

1
n2
‖D|ν|L(vn, f − L(vk, f ))‖q

≤
1
n2
‖D|ν|L(vk, f )‖q + C‖f − L(vk, f )‖q

=

(
k
n

)2
ak + Cbk. (4.5)

This establishes that the condition of (4.1) is met, so we can now
apply the results of Lemma 1. Substituting p = v = 2 in to (4.1):

an ≤ C2n−2
{

n∑
k=1

kbk + a1

}
.

Therefore, substituting for bk and a1:

sup
|ν|=2
‖D|ν|L(vn, f )‖q ≤ C2

{
n∑
k=1

k‖L(vk, f )− f ‖q + ‖f ‖q

}
. (4.6)

On the other hand, for n ≥ 2, there exists m ∈ N such that
n
2 ≤ m ≤ n and

‖f − L(vm, f )‖q ≤ ‖f − L(vk, f )‖q,
n
2
≤ k ≤ n. (4.7)

Based on Eqs. (4.5)–(4.7), we now can define a K -function as fol-
lows:

K2(f , t2) = inf
D|m|g∈A.C.loc

{
‖f − g‖ + t2 sup

|m|=2
‖D|m|g‖

}
,

where g ∈ A.C.loc means that g is |m| times differentiable and
D|m|g is absolutely continuous in the finite set.
From Johnen and Scherer (1977), there exists a positive con-

stant C ′ such that

C ′−1K2(f , t2) ≤ ω2(f , t) ≤ C ′K2(f , t2). (4.8)

Hence,

K2

(
f ,

1
(n+ 2)2

)
≤ ‖f − L(vm, f )‖q +

1
(n+ 2)2

sup
|ν|=2
‖D|ν|L(vn, f )‖q

≤
4
n2

∑
n
2≤k≤n

k‖f − L(vk, f )‖q

+
C2

(n+ 2)2

{
n∑
k=1

k‖L(vk, f )− f ‖q + ‖f ‖q

}

≤ C3
1
n2

{
n∑
k=1

k‖L(vk, f )− f ‖q + ‖f ‖q

}

≤
C3
n2

{
n∑
k=1

k · d∞(f , Pk(d))+ ‖f ‖∞

}
.



J. Wang, Z. Xu / Neural Networks 23 (2010) 618–624 623
Using Eq. (4.8) and a technique used in Theorem 3, we deduce that

ω2

(
f ,

1
n+ 2

)
≤
C
n2

{
n∑
k=1

k · (d∞(f , Rσk (d))+ ε)+ ‖f ‖∞

}

≤
C
n2

{
n∑
k=1

k · d∞(f , Rσk (d))+ ‖f ‖∞

}
+ Cε.

Since ε is arbitrary, it gives (2.2). �

The estimation (2.3) can be verified directly by combining the
conclusions (2.1) with (2.2).
Nowweprove the estimation (2.4). Firstly, we prove the follow-

ing proposition.

Proposition 3. Assume that for the nonnegative sequences {an}, {bn},
{bk}nk=1 satisfied bk ≤

(
1+ 1

k

)p
bk+1, and the inequality

an ≤ Cn−2
{

n∑
k=1

kbk +M

}
(4.9)

holds for n ∈ N, then one has

an ≤ C(bn + n−2M). (4.10)

Here C ≥ 1 is a constant and M is a constant independent of n, k.
Proof. In fact, we only need to prove the general inequality
n∑
k=1

kp−1bk ≤ Cnpbn (4.11)

holds for p ∈ N . We prove (4.11) by induction. When n = 1, we
have

b1 ≤ Cb1.

Assume (4.11) is correct for n ∈ N , that is,
n∑
k=1

kp−1bk ≤ Cnpbn.

We now show that (4.11) also holds for n+ 1. It is clear that
n+1∑
k=1

kp−1bk =
n∑
k=1

kp−1bk + (n+ 1)p−1bn+1

≤ Cnpbn + (n+ 1)p−1bn+1

≤ C(n+ 1)pbn+1

((
n
n+ 1

)p bn
bn+1
+

1
C(n+ 1)

)
≤ C(n+ 1)pbn+1.

With this, inequality (4.11) is completed. Let p = 2, using Eqs. (4.9)
and (4.11), we have

an ≤ C2n−2
{

n∑
k=1

k1bk +M

}
≤ C · C2bn + C · C2n−2M
≤ C(bn + n−2M).

Eq. (4.10) is completed.
Now for Eq. (2.2), let an = ω2

(
f , 1
n+2

)
, bk = d∞(f , Rσk (d)), and

M = ‖f ‖∞. Applying Proposition 3, we have

an ≤ C(bn + n−2M).

Therefore

ω2

(
f ,

1
n+ 2

)
≤ C{d∞(f , Rσn (d))+ n

−2
‖f ‖∞},

which gives (2.4). Combining Eqs. (2.1) and (2.4), the estimation
(2.5) is established.
Now we prove (2.6). From (2.2) and the fact that d∞(f ,
Rσn (d)) is monotonically decreasing, we have

ω2

(
f ,

1
n+ 2

)
≤
C
n2

{
n∑
k=1

k · d∞(f , Rσk (d))+ ‖f ‖∞

}

=
C
n2

{
[nδ ]−1∑
k=1

k · d∞(f , Rσk (d))

+

n∑
k=[nδ ]

k · d∞(f , Rσk (d))+ ‖f ‖∞

}

≤
C
n2

{
d∞(f , Rσ1 (d))

[nδ ]−1∑
k=1

k

+ d∞(f , Rσ[nδ ](d))
n∑

k=[nδ ]

k+ ‖f ‖∞

}

≤ C

{
1

n2(1−δ)
d∞(f , Rσ1 (d))

+ d∞(f , Rσ[nδ ](d))+ n
−2
‖f ‖∞

}
.

In order to confirm the number of hidden neurons used, we
take n to be the smallest integer larger than the reciprocal of ε
(the preset approximationprecision) in (2.1). Though computation,
we obtain m(n) = minBd(f ,n)<ε(n + 1)

d, where Bd(f , n) =
1
2

(√
dπ2
2 + 1

)2
ω2
(
f , 1
n+2

)
. With this, the proof of Theorem 1 is

completed. �

5. Conclusions

In this work, the essential approximation order of the nearly
exponential-type neural networks has been studied. In terms of
second-order modulus of smoothness of a function, an upper
bound and lower bound estimations on approximation precision
and speed of the neural networks are simultaneously developed.
Under certain assumption on the neFNNs, we present ideally the
upper bound and the lower bound on the degree of approximation.
Our research reveals that the approximation precision and speed
of the neural networks depend not only on the number of hidden
neurons used, but also on the smoothness of the functions to be ap-
proximated.We have explicitly given a lower bound estimation on
the number of hidden neurons of the network in order to attain a
predetermined approximation precision. The results obtained are
helpful in understanding the approximation capability and topol-
ogy construction of the neural networks.
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